Images
To access the instanceURI
mask, make sure you have the proper authentication, then append a query parameter to the end of the URL.
Masks
The image segmentation tool produces a per-instance semantic mask which you can access via the instanceURI
. This format supports Panoptic (instance) segmentation, so each object instance will be one row in your export file.
"Label": { "objects": [ { "featureId": "ck9bmetz800340za5k073bm7w", "schemaId": "ck9blmq1lnlxz08892qqlmxto", "title": "sample-mask", "value": "sample-mask", "color": "#2BFF00", "instanceURI": "https://api.labelbox.com/masks/feature/ck9bme..." } ], "classifications": [] }
Bounding boxes
The geometric key for Bounding boxes contains coordinates for the top left corner as well as height and width measurements.
| Ymin value |
| Xmin value |
"Label": { "objects": [ { "featureId": "ck9bmeej61emf0yf5bgjb4tjw", "schemaId": "ck9blmq1lnlxw08895jy7zsk4", "title": "sample-bbox", "value": "sample-bbox", "color": "#FF8000", "bbox": { "top": 186, "left": 192, "height": 300, "width": 519 }, "instanceURI": "https://api.labelbox.com/masks/feature/ck9bmeej61emf0yf5bgjb4tjw..." } ], "classifications": [] }
Polygons
The x,y coordinates for Polygons are listed in the order that they were initially created (points added after initial creation will be inserted in the proper position).
"Label": { "objects": [ { "featureId": "ck9blnafk1d070yf5bhq4q1fv", "schemaId": "ck9blmq1lnlxv0889cu4r18mx", "title": "sample-polygon", "value": "sample-polygon", "color": "#FF0000", "polygon": [ { "x": 3665.814, "y": 351.628 }, { "x": 3762.93, "y": 810.419 }, { "x": 3042.93, "y": 914.233 }, { "x": 2996.047, "y": 864 }, { "x": 3036.233, "y": 753.488 } ], "instanceURI": "https://api.labelbox.com/masks/feature/ck9..." } ], "classifications": [] }
Polylines
For Polylines , the coordinates in the geometric key are in a clockwise direction.
"Label": { "objects": [ { "featureId": "ck9bmejeu00c20ya10woo1ml5", "schemaId": "ck9blmq1lnlxx088964dfy107", "title": "sample-polyline", "value": "sample-polyline", "color": "#FFFF00", "line": [ { "x": 328.535, "y": 308.215 }, { "x": 613.242, "y": 735.277 }, { "x": 958.026, "y": 907.668 }, { "x": 1352.437, "y": 905.056 } ], "instanceURI": "https://api.labelbox.com/masks/feature/ck9bmejeu00c20ya10woo1ml5?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VySWQiOiJjazhwNTVueDYzdG45MDgxMWM3Z3p6dXYyIiwib3JnYW5pemF0aW9uSWQiOiJjamhmbjV5NnMwcGs1MDcwMjRuejFvY3lzIiwiaWF0IjoxNTg3NTc3MTI3LCJleHAiOjE1OTAxNjkxMjd9.U5wynJzDMe3ReL71CTzTZO7aojp1GI2TzaIpNK89XaI" } ], "classifications": [] }
Points
The Point tool is often used for labeling tasks that require more precision than the other vector tools can offer. The Point tool does not support sub-pixel placement.
"Label": { "objects": [ { "featureId": "ck9bmemy91hic10bogwc6sygv", "schemaId": "ck9blmq1lnlxy0889stzln2ms", "title": "sample-point", "value": "sample-point", "color": "#D4FF00", "point": { "x": 116, "y": 98 }, "instanceURI": "https://api.labelbox.com/masks/feature/..." } ], "classifications": [] }
Image classification
The Image classification tool produces a semantic classification with no geometric information. The four classification types are radio, checklist, dropdown, and text classification.
"Label": { "objects": [], "classifications": [ { "featureId": "ck9bloche1fy910bom8fgji90", "schemaId": "ck9blmq1lnlxs0889u7xa8byw", "title": "Free text question", "value": "free_text_question", "answer": "sample text" }, { "featureId": "ck9bloham1d1b0yf5870yxzxp", "schemaId": "ck9blmq4ifi4b09760b4ur5ih", "title": "Radio question", "value": "radio_question", "answer": { "featureId": "ck9blohbp1d1c0yf523u34azb", "schemaId": "ck9blmq1lnlxo0889u50lm3dx", "title": "Yes", "value": "yes" } }, { "featureId": "ck9bloipe005h10evp9txzhi6", "schemaId": "ck9blmq4jfi4c0976jzdlk2fw", "title": "Checklist question", "value": "checklist_question", "answers": [ { "featureId": "ck9bloiqc005i10evlzlv90v5", "schemaId": "ck9blmq1lnlxq0889oy9h5596", "title": "Red", "value": "red" }, { "featureId": "ck9blojbm1doo0zdga69rzqdj", "schemaId": "ck9blmq1lnlxr08893iamqxcz", "title": "Blue", "value": "blue" } ] }, { "featureId": "ck9nedyfw05v91276aqbzfsnj", "schemaId": "ck9nedt5a1kgw0y6tnj17m2i2", "title": "Dropdown question", "value": "dropdown_question", "answer": [ { "featureId": "ck9nedyhm05va127627ypedfy", "schemaId": "ck9nedt701kh20y6tqoxgndvv", "title": "Answer", "value": "answer" }, { "featureId": "ck9nedyi305vb12764xxeuypd", "schemaId": "ck9nedt8a1khb0y6t37ylx1rb", "title": "Nested answer", "value": "nested_answer" } ] } ] }
Classifications within objects
Nested classifications
appear under objects
. The four classification types are radio, checklist, dropdown, and text classification.
"Label": { "objects": [ { "featureId": "ck9nkjj6j03341081z1d9dpd4", "schemaId": "ck9nkgekg00vz109la501ywx2", "title": "Sample polygon", "value": "sample-polygon", "color": "#FF0000", "instanceURI": "https://api.labelbox.com/masks/feature/ck9nkjj6j03341081z1d9dpd4?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VySWQiOiJjazUycnZ4MWtxYXpiMDc3MDBtcTI3eDRsIiwib3JnYW5pemF0aW9uSWQiOiJjazUycnZ4MG1wdzRnMDc2NndncXZqdGw5IiwiaWF0IjoxNTg4Mjk5NTY3LCJleHAiOjE1OTA4OTE1Njd9.vlI_0QUG-wJHZwdk3IZX1E59VAiTkMiF41-QyD1jIGs", "classifications": [ { "featureId": "ck9nkjl5d03iu0z945fhjo1gb", "schemaId": "ck9nkjdm703bl1064fn42xtn5", "title": "Nested classification", "value": "nested_classification", "answer": { "featureId": "ck9nkjl6f03iv0z94ewv0s74j", "schemaId": "ck9nkjdnq03bu1064oy6qimtn", "title": "Answer 1", "value": "answer_1" } } ] } ] }