How to upload predictions on geospatial assets in a model run
Open a Colab to go through the exercise of importing geospatial predictions.
Supported predictions
To upload predictions in Labelbox, you need to create the predictions payload. In this section, we provide this payload for every prediction type.
Labelbox supports two formats for the predictions payload:
- Python annotation types (recommended)
- NDJSON
Both are described below.
Uploading confidence scores is optional
If you do not specify a confidence score, the prediction will be treated as if it had a confidence score of 1.
Point
point_prediction = lb_types.ObjectAnnotation(
name = "point_geo",
confidence = 0.5,
value = lb_types.Point(x=-122.31741025134123, y=37.87355669249922),
)
point_prediction_ndjson = {
"name": "point_geo",
"confidence": 0.5,
"point": {
"x": -122.31741025134123,
"y": 37.87355669249922
}
}
Polyline
coords = [
[
-122.31757789012927,
37.87396317833991
],
[
-122.31639782443663,
37.87396741226917
],
[
-122.31638977853417,
37.87277872707839
]
]
line_points = []
for sub in coords:
line_points.append(lb_types.Point(x=sub[0], y=sub[1]))
polyline_prediction = lb_types.ObjectAnnotation(
name = "polyline_geo",
confidence = 0.5,
value = lb_types.Line(points=line_points),
)
coords = [
[
-122.31757789012927,
37.87396317833991
],
[
-122.31639782443663,
37.87396741226917
],
[
-122.31638977853417,
37.87277872707839
]
]
line_points_ndjson = []
for sub in coords:
line_points_ndjson.append({"x":sub[0], "y":sub[1]})
polyline_prediction_ndjson = {
"name": "polyline_geo",
"confidence": 0.5,
"line": line_points_ndjson
}
Polygon
coords_polygon = [
[
-122.31691812612837,
37.873289980495024
],
[
-122.31710184090099,
37.87304335144298
],
[
-122.31680146054286,
37.87303594197371
],
[
-122.31691812612837,
37.873289980495024
]
]
polygon_points = []
for sub in coords_polygon:
polygon_points.append(lb_types.Point(x=sub[0], y=sub[1]))
polygon_prediction = lb_types.ObjectAnnotation(
name = "polygon_geo",
confidence = 0.5,
value = lb_types.Polygon(points=polygon_points),
)
coords_polygon = [
[
-122.31691812612837,
37.873289980495024
],
[
-122.31710184090099,
37.87304335144298
],
[
-122.31680146054286,
37.87303594197371
],
[
-122.31691812612837,
37.873289980495024
]
]
polygon_points_ndjson = []
for sub in coords_polygon:
polygon_points_ndjson.append({"x":sub[0], "y":sub[1]})
polygon_prediction_ndjson = {
"name": "polygon_geo",
"confidence": 0.5,
"polygon": polygon_points_ndjson
}
Bounding box
bbox_top_left = lb_types.Point(x=-122.31734455895823, y=37.873713376083884)
bbox_bottom_right = lb_types.Point(x=-122.31673038840458, y=37.87385944699745)
bbox_prediction = lb_types.ObjectAnnotation(
name = "bbox_geo",
confidence = 0.5,
value = lb_types.Rectangle(start=bbox_top_left, end=bbox_bottom_right)
)
coord_object = {
"coordinates": [
[
[
-122.31734455895823,
37.873713376083884
],
[
-122.31734455895823,
37.87385944699745
],
[
-122.31673038840458,
37.87385944699745
],
[
-122.31673038840458,
37.873713376083884
],
[
-122.31734455895823,
37.873713376083884
]
]
]
}
bbox_prediction_ndjson = {
"name" : "bbox_geo",
"confidence": 0.5,
"bbox" : {
'top': coord_object["coordinates"][0][1][1],
'left': coord_object["coordinates"][0][1][0],
'height': coord_object["coordinates"][0][3][1] - coord_object["coordinates"][0][1][1],
'width': coord_object["coordinates"][0][3][0] - coord_object["coordinates"][0][1][0]
}
}
Classification: Radio (single choice)
radio_prediction = lb_types.ClassificationAnnotation(
name="radio_question_geo",
confidence = 0.5,
value=lb_types.Radio(answer=lb_types.ClassificationAnswer(name="first_radio_answer"))
)
radio_prediction_ndjson = {
"name": "radio_question_geo",
"confidence": 0.5,
"answer": { "name": "first_radio_answer"}
}
Bounding box with nested checklist classification
bbox_with_checklist_subclass = lb_types.ObjectAnnotation(
name="bbox_checklist_geo",
confidence = 0.5,
value=lb_types.Rectangle(
start=lb_types.Point(x=-122.31711256877092, y=37.87340218056304), # Top left
end=lb_types.Point(x=-122.31665529331502, y=37.87360752741479), # Bottom right
),
classifications=[
lb_types.ClassificationAnnotation(
name="checklist_class_name",
value=lb_types.Checklist(
answer=[lb_types.ClassificationAnswer(name="first_checklist_answer", confidence = 0.5)]
)
)
]
)
coord_object_checklist = {
"coordinates": [
[
[
-122.31711256877092,
37.87340218056304
],
[
-122.31711256877092,
37.87360752741479
],
[
-122.31665529331502,
37.87360752741479
],
[
-122.31665529331502,
37.87340218056304
],
[
-122.31711256877092,
37.87340218056304
]
]
]
}
bbox_with_checklist_subclass_ndjson = {
"name": "bbox_checklist_geo",
"confidence": 0.5,
"classifications": [{
"name": "checklist_class_name",
"answer": [
{ "name":"first_checklist_answer", "confidence": 0.5 }
]
}],
"bbox": {
'top': coord_object_checklist["coordinates"][0][1][1],
'left': coord_object_checklist["coordinates"][0][1][0],
'height': coord_object_checklist["coordinates"][0][3][1] - coord_object_checklist["coordinates"][0][1][1],
'width': coord_object_checklist["coordinates"][0][3][0] - coord_object_checklist["coordinates"][0][1][0]
}
}
Bounding box with nested free-text classification
bbox_with_free_text_subclass = lb_types.ObjectAnnotation(
name="bbox_text_geo",
value=lb_types.Rectangle(
start=lb_types.Point(x=-122.31750814315438, y=37.87318201423049), # Top left
end=lb_types.Point(x=-122.31710049991725, y=37.87337992476082), # Bottom right
),
classifications=[
lb_types.ClassificationAnnotation(
name="free_text_geo",
value=lb_types.Text(answer="sample text")
)
]
)
coord_object_text ={
"coordinates": [
[
[
-122.31750814315438,
37.87318201423049
],
[
-122.31750814315438,
37.87337992476082
],
[
-122.31710049991725,
37.87337992476082
],
[
-122.31710049991725,
37.87318201423049
],
[
-122.31750814315438,
37.87318201423049
]
]
]
}
bbox_with_free_text_subclass_ndjson = {
"name":"bbox_text_geo",
"classifications": [{
"name": "free_text_geo",
"answer": "sample text"
}],
"bbox": {
'top': coord_object_text["coordinates"][0][1][1],
'left': coord_object_text["coordinates"][0][1][0],
'height': coord_object_text["coordinates"][0][3][1] - coord_object_text["coordinates"][0][1][1],
'width': coord_object_text["coordinates"][0][3][0] - coord_object_text["coordinates"][0][1][0]
}
}
Classification: Checklist (multi-choice)
checklist_prediction = lb_types.ClassificationAnnotation(
name="checklist_question_geo",
confidence = 0.5,
value=lb_types.Checklist(answer = [
lb_types.ClassificationAnswer(name = "first_checklist_answer", confidence = 0.5),
lb_types.ClassificationAnswer(name = "second_checklist_answer", confidence = 0.5),
lb_types.ClassificationAnswer(name = "third_checklist_answer", confidence = 0.5)
])
)
checklist_prediction_ndjson = {
'name': 'checklist_question_geo',
"confidence": 0.5,
'answer': [
{'name': 'first_checklist_answer', "confidence": 0.5},
{'name': 'second_checklist_answer', "confidence": 0.5},
{'name': 'third_checklist_answer', "confidence": 0.5},
]
}
End-to-end example: Upload predictions to a model run
Follow the steps below to upload predictions to a model run.
Before you start
You will need to import these libraries to use the code examples in this section.
import os
import uuid
import numpy as np
from PIL import Image
import cv2
import ndjson
import labelbox as lb
import labelbox.types as lb_types
Replace with your API key
To learn how to create an API key, please follow the instructions on this page.
API_KEY = ""
client = lb.Client(API_KEY)
Step 1: Import data rows into Catalog
top_left_bound = lb_types.Point(x=-122.31764674186705, y=37.87276155898985)
bottom_right_bound = lb_types.Point(x=-122.31635199317932, y=37.87398109727749)
epsg = lb_types.EPSG.EPSG4326
bounds = lb_types.TiledBounds(epsg=epsg, bounds=[top_left_bound, bottom_right_bound])
tile_layer = lb_types.TileLayer(
url="https://api.mapbox.com/styles/v1/mapbox/satellite-streets-v11/tiles/{z}/{x}/{y}?access_token=pk.eyJ1IjoibWFwYm94IiwiYSI6ImNpejY4NXVycTA2emYycXBndHRqcmZ3N3gifQ.rJcFIG214AriISLbB6B5aw"
)
tiled_image_data = lb_types.TiledImageData(tile_layer=tile_layer,
tile_bounds=bounds,
zoom_levels=[17, 23])
asset = {
"row_data": tiled_image_data.asdict(),
"global_key": str(uuid.uuid4()),
"media_type": "TMS_GEO"
}
dataset = client.create_dataset(name="geo_demo_dataset")
data_row = dataset.create_data_row(asset)
print(data_row)
Step 2: Create/select an ontology for your model predictions
Your model run should have the correct ontology set up with all the tools and classifications supported for your predictions.
Here is an example of creating an ontology programmatically for all the example predictions above:
ontology_builder = lb.OntologyBuilder(
tools=[
lb.Tool(tool=lb.Tool.Type.POINT, name="point_geo"),
lb.Tool(tool=lb.Tool.Type.LINE, name="polyline_geo"),
lb.Tool(tool=lb.Tool.Type.POLYGON, name="polygon_geo"),
lb.Tool(tool=lb.Tool.Type.POLYGON, name="polygon_geo_2"),
lb.Tool(tool=lb.Tool.Type.BBOX, name="bbox_geo"),
lb.Tool(
tool=lb.Tool.Type.BBOX,
name="bbox_checklist_geo",
classifications=[
lb.Classification(
class_type=lb.Classification.Type.CHECKLIST,
name="checklist_class_name",
options=[
lb.Option(value="first_checklist_answer")
]
),
]
),
lb.Tool(
tool=lb.Tool.Type.BBOX,
name="bbox_text_geo",
classifications=[
lb.Classification(
class_type=lb.Classification.Type.TEXT,
name="free_text_geo"
),
]
)
],
classifications = [
lb.Classification(
class_type=lb.Classification.Type.CHECKLIST,
name="checklist_question_geo",
options=[
lb.Option(value="first_checklist_answer"),
lb.Option(value="second_checklist_answer"),
lb.Option(value="third_checklist_answer")
]
),
lb.Classification(
class_type=lb.Classification.Type.RADIO,
name="radio_question_geo",
options=[
lb.Option(value="first_radio_answer")
]
)
]
)
ontology = client.create_ontology("Ontology Geospatial Annotations",
ontology_builder.asdict(),
media_type=lb.MediaType.Geospatial_Tile)
Step 3: Create a Model and model run
# create Model
model = client.create_model(name="geospatial_model_run_" + str(uuid.uuid4()),
ontology_id=ontology.uid)
# create model run
model_run = model.create_model_run("iteration 1")
Step 4: Send data rows to the model run
model_run.upsert_data_rows([data_row.uid])
Step 5: Create the predictions payload
Create the annotations payload using the snippets in the Supported Predictions section.
The resulting label_ndjson
should have exactly the same content for both NDJson and Annotation types (with the exception of the uuid
strings that are generated)
Prediction example using cv2 and PIL libraries and NDJSON version of the same annotation (optional)
polygon_prediction_two_ndjson = {
"name": "polygon_geo_2",
"confidence": 0.5,
"polygon": [
{'x': -122.31703039689702, 'y': 37.87397804081582},
{'x': -122.31702351036107, 'y': 37.87393525033866},
{'x': -122.31698907768116, 'y': 37.87389857276706},
{'x': -122.3169787478772, 'y': 37.87385883871054},
{'x': -122.31695808826926, 'y': 37.87385578224377},
{'x': -122.31695464500127, 'y': 37.873816048164166},
{'x': -122.31692021232138, 'y': 37.873779370533214},
{'x': -122.31690988251741, 'y': 37.87373352346883},
{'x': -122.3168857796415, 'y': 37.873696845796786},
{'x': -122.3168547902296, 'y': 37.873684619902065},
{'x': -122.31682035754969, 'y': 37.873611264491025},
{'x': -122.31676526526188, 'y': 37.87355013492598},
{'x': -122.3167583787259, 'y': 37.87351651364362},
{'x': -122.31671017297403, 'y': 37.87348900531027},
{'x': -122.31671017297403, 'y': 37.873452327516496},
{'x': -122.31667918356217, 'y': 37.87344010158117},
{'x': -122.31663442107829, 'y': 37.87335451997715},
{'x': -122.31660343166638, 'y': 37.87334840700161},
{'x': -122.31659998839841, 'y': 37.873320898605485},
{'x': -122.31654489611057, 'y': 37.87329033370888},
{'x': -122.31652767977064, 'y': 37.87319863894286},
{'x': -122.31648980382273, 'y': 37.8731833564708},
{'x': -122.31648980382273, 'y': 37.873161961004534},
{'x': -122.31641749519497, 'y': 37.87309166157168},
{'x': -122.316410608659, 'y': 37.873054983580076},
{'x': -122.31639683558704, 'y': 37.873039701078184},
{'x': -122.31635551637117, 'y': 37.873039701078184},
{'x': -122.31635551637117, 'y': 37.87398109727749},
{'x': -122.31703039689702, 'y': 37.87397804081582}
]
}
# Let's create another polygon annotation with python annotation tools that draws the image using cv2 and PIL Python libraries
hsv = cv2.cvtColor(tiled_image_data.value, cv2.COLOR_RGB2HSV)
mask = cv2.inRange(hsv, (10, 25, 25), (100, 150, 255))
kernel = np.ones((15, 20), np.uint8)
mask = cv2.erode(mask, kernel)
mask = cv2.dilate(mask, kernel)
mask_annotation = lb_types.MaskData.from_2D_arr(mask)
mask_data = lb_types.Mask(mask=mask_annotation, color=[255, 255, 255])
h, w, _ = tiled_image_data.value.shape
pixel_bounds = lb_types.TiledBounds(epsg=lb_types.EPSG.SIMPLEPIXEL,
bounds=[lb_types.Point(x=0, y=0),
lb_types.Point(x=w, y=h)])
transformer = lb_types.EPSGTransformer.create_pixel_to_geo_transformer(
src_epsg=pixel_bounds.epsg,
pixel_bounds=pixel_bounds,
geo_bounds=tiled_image_data.tile_bounds,
zoom=23)
pixel_polygons = mask_data.shapely.simplify(3)
list_of_polygons = [transformer(lb_types.Polygon.from_shapely(p)) for p in pixel_polygons.geoms]
polygon_prediction_two = lb_types.ObjectAnnotation(value=list_of_polygons[0], name="polygon_geo_2", confidence=0.5)
Prediction payload generation
label_ndjson_method_2 = []
for prediction in [
radio_prediction_ndjson,
checklist_prediction_ndjson,
bbox_with_free_text_subclass_ndjson,
bbox_with_checklist_subclass_ndjson,
bbox_prediction_ndjson,
point_prediction_ndjson,
polyline_prediction_ndjson,
polygon_prediction_ndjson,
polygon_prediction_two_ndjson
]:
prediction.update({
'dataRow': {'id': data_row.uid},
})
label_ndjson_method_2.append(prediction)
tiled_image_data_row_id = next(dataset.export_data_rows()).uid
label = lb_types.Label(
data=lb_types.TiledImageData(
uid=tiled_image_data_row_id ,
tile_layer=tile_layer,
tile_bounds=bounds,
zoom_levels=[17, 23]
),
annotations = [
point_prediction,
polyline_prediction,
polygon_prediction,
bbox_prediction,
radio_prediction,
bbox_with_checklist_subclass,
bbox_with_free_text_subclass,
checklist_prediction,
polygon_prediction_two
]
)
label_list = [label]
Step 6: Upload the predictions payload to the Model Run
# Upload the prediction label to the Model Run
upload_job_prediction = model_run.add_predictions(
name="prediction_upload_job"+str(uuid.uuid4()),
predictions=label_ndjson_method_2)
# Errors will appear for annotation uploads that failed.
print("Errors:", upload_job_prediction.errors)
Step 7: Send annotations to the Model Run (Optional)
# 7.1. Create a labelbox project
# Create a Labelbox project
project = client.create_project(name="geospatial_prediction_demo",
queue_mode=lb.QueueMode.Batch,
# Quality Settings setup
auto_audit_percentage=1,
auto_audit_number_of_labels=1,
media_type=lb.MediaType.Geospatial_Tile)
project.setup_editor(ontology)
# 7.2. Create a batch to send to the project
project.create_batch(
"batch_geospatial_prediction_demo", # Each batch in a project must have a unique name
dataset.export_data_rows(), # A list of data rows or data row ids
5 # priority between 1(Highest) - 5(lowest)
)
# 7.3 Create the annotations payload as explained in:
# https://docs.labelbox.com/reference/import-geospatial-annotations#supported-annotations
point_annotation_ndjson...
polyline_annotation_ndjson...
polygon_annotation_ndjson...
polygon_annotation_two_ndjson...
bbox_annotation_ndjson...
radio_annotation_ndjson...
bbox_with_checklist_subclass_annotation_ndjson...
bbox_with_free_text_subclass_annotation_ndjson...
checklist_annotation_ndjson...
# 7.4 Create the label object
ndjson_annotation = []
for annot in [
radio_annotation_ndjson,
checklist_annotation_ndjson,
bbox_with_free_text_subclass_annotation_ndjson,
bbox_with_checklist_subclass_annotation_ndjson,
bbox_annotation_ndjson,
point_annotation_ndjson,
polyline_annotation_ndjson,
polygon_annotation_ndjson,
polygon_annotation_two_ndjson
]:
annot.update({
'dataRow': {'id': data_row.uid},
})
ndjson_annotation.append(annot)
# 7.5 Upload annotations to the project using Label Import
upload_job_annotation = lb.LabelImport.create_from_objects(
client = client,
project_id = project.uid,
name="geospatial_annotations_import_" + str(uuid.uuid4()),
labels=ndjson_annotation)
upload_job_annotation.wait_until_done()
# Errors will appear for annotation uploads that failed.
print("Errors:", upload_job_annotation.errors)
# 7.6. Send the annotations to the Model Run
# get the labels id from the project
label_ids = [x['ID'] for x in project.export_labels(download=True)]
model_run.upsert_labels(label_ids)
End-to-end python tutorial
Open this Colab to go through the exercise of uploading geospatial predictions.